
1. Introduction
In the Western United States, water from snow-dominated mountainous regions provide important eco-
system services such as irrigation water, hydroelectric power production, and mitigation of wildfire risk 
(Bales et al., 2006; Cayan et al., 2001; Knowles & Cayan, 2004; Mote et al., 2005). These regions are consid-
ered “water towers” because they produce disproportionately more water than adjacent lowlands (Viviroli 
et al., 2007), and represent roughly two-thirds of the inflow to reservoirs in the western United States (Li 
et al., 2017). Understanding the volume and spatial distribution of snowpack in mountainous headwaters 
across the West therefore remains a critical objective for regional water resource security.

Abstract Understanding the distribution of snow-water equivalent (SWE) is crucial for the prediction 
of water resources in the western United States. Backward running SWE reconstructions use satellite-
observed, binary snow presence imagery to reconstruct SWE mass estimates. This approach relies on the 
connection between snow timing and peak SWE, yet few studies have directly examined this relationship. 
Here, we investigate the strength and spatiotemporal variation in this relationship across the western 
United States and Alaska. Within the SNOTEL network (n = 611 sites), we find that most variance in 
peak SWE is explained (median R2 = 0.64, σ = 0.18) by, in order of explanatory skill, the timing of snow 
disappearance, onset, and cover duration, with variation in skill primarily related to climate conditions—
like winter storm size and storm frequency—rather than topographical setting. We expand this analysis 
with a diagnostic model of peak SWE driven by remotely sensed snow timing indices applied to five 
hydrologically important regions in the western United States and Alaska. Uncertainties arising between 
blending point and 500 m grid-scale observations were found to influence model SWE bias, but a robust 
correlation (median R = 0.88) with observations persisted across all tested thresholds. Overall, this 
supports the viability of snow timing information for quantifying spatial patterns of peak SWE (mean 
R2 = 0.76, percent bias = 3.6%) over the past two decades. These findings carry important implications for 
the development of SWE reanalysis products and for the evaluation of climate and hydrologic models.

Plain Language Summary Knowing how much snow is on the ground in the mountains of 
the US West and Alaska is important information for water resource managers. Currently, ground station 
networks that monitor the amount of water in the snowpack are too sparse to observe across landscapes, 
while most satellites can only observe the presence of snow, rather than water content. Snow models 
are often used to &quot;fill in the gaps&quot; by estimating snow water content using physical process 
knowledge about snow melt, and one example is the snow reconstruction. This type of model typically 
estimates historical snow water content by relating snow disappearance timing with energy inputs into 
the snow to reconstruct a quantity of snow water content. This relationship between snow timing and 
water content is known, but its variation has yet to be fully explored. Here, we examine this relationship 
in detail, showing how it varies in space and time, as well as what meteorological and topographical 
conditions influence it. We also use satellite-observed snow information to estimate snow water content 
across landscapes with encouraging results in coastal areas, but with less potential further inland and in 
Alaska. These results may be valuable for future development of snow models.
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Observations of snow via a ground-based network offer high-quality information such as snow-water equiv-
alent (SWE) and have been made in some capacity in the western United States for decades. Since at least 
1,906, snow course measurements of snow depth and SWE have been made at regular intervals over the 
cold season by expeditionary teams collecting snow cores along a transect (Palmer, 1988). The SNOTEL 
network, which began in 1978, was designed to supplement, and in some cases, replace snow course survey 
(SCSs), providing relatively cost-effective snow monitoring in regions of high snow accumulation (Dressler 
et al., 2006). However, while the collected data is of high quality, SNOTEL sampling is limited in geograph-
ical coverage (Blöschl, 1999) and spatial representativeness given siting constraints associated with accessi-
bility and protection from public disturbance (Meromy et al., 2013; Molotch & Bales, 2006). Furthermore, 
SNOTEL stations are often placed in areas of relatively high accumulation, which limits representativeness 
across the landscape at the elevation in which they are located (Broxton et al., 2019). Thus, while SNOTEL 
and snow course networks provide valuable information on SWE, their sparse sampling limits direct obser-
vation of SWE across entire landscapes.

More recently available observations of snow through remote sensing do provide spatially continuous snow 
information. In 1999, the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) platform 
aboard the Terra satellite made available a series of snow cover products (500 m) shown to be more effective 
at capturing snow covered area (SCA), particularly in topographically complex forested areas, relative to 
other satellite products (Gafurov et al., 2013; Maurer et al., 2002; Rittger et al., 2013). However, with the 
exception of passive microwave sensing, most remote sensing instruments cannot directly estimate SWE, 
and even passive microwave-based measurements have been reported to provide relatively low accuracy in 
forests and regions that receive deeper snowpack (Cho et al., 2017; Vuyovich et al., 2014). The principal re-
motely sensed snow product that is available, SCA, contains only limited information as compared to SWE, 
which, as it stands currently, is still most reliably observed from ground-based measurements (Vuyovich 
et al., 2014).

A number of backward running SWE “reconstructions” leverage the strengths of remote-sensing datasets 
to produce spatially continuous estimates of SWE. The earliest SWE reconstructions followed an initial 
feasibility study produced by Cline et al. (1998), and typically use information about the DSD to initialize 
a backward running model that uses a spatially distributed energy balance representation to reconstruct 
the amount of melt that occurred over time, and thus how much total SWE was present at a given location. 
During winter season, the timing of complete snow ablation has been shown to be largely controlled by 
the total magnitude of peak snow accumulation, and this provides the basis for many SWE reconstructions 
(Durand et al., 2008a, 2008b; Molotch, 2009). However, reconstruction approaches carry a number of im-
portant drawbacks, perhaps most significant among them being a limitation to backward running operation 
due to their reliance on observations of snow disappearance, as well as high computational expense. Slater 
et al. (2013) detail a number of other sources of uncertainty, including inference of the final date of seasonal 
snow cover, errors arising from model forcing data, and issues associated with snow process equation fidel-
ity and parameterization in the snow model. Yet, because of a foundation on satellite-derived observational 
data, snow reconstructions and reanalyses still provide a relatively high degree of accuracy (Bair et al., 2016; 
Guan et al., 2013; Margulis et al., 2016; Schneider & Molotch, 2016), although this accuracy is not consistent 
in space or time.

No studies to date have sought to quantify the spatiotemporal variation in the relationship between the 
timing of snow processes and depth in the context of SWE reconstructions, though several studies have ex-
amined timing-depth relationships in other contexts. For example, Lute and Luce (2017) develop models for 
April 1 SWE and snow residence time based on mean winter temperature and cumulative winter precipita-
tion to assess tradeoffs between model transferability and complexity. Pflug and Lundquist (2020) leverage 
historical, recurring snow patterns to resolve spatial patterns in snow depth in the Tuolumne watershed of 
the Sierra Nevada mountain range. Other studies investigate long-term trends in snow cover onset timing, 
accumulation, persistence, disappearance timing, and SWE depth at continental scales (Broxton et al., 2016; 
Dawson et al., 2018; Zhang & Ma, 2018). These studies serve as the motivation for the parsimonious and 
observational approach that underpins this investigation.

Here we assess the relationship between peak SWE and snow timing variables—hereafter the ‘SWE-timing’ 
relationship, across the western United States and Alaska. We use the term ‘snow timing’ to refer to remotely 
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sensed snow onset, cover duration, and disappearance. The SWE-timing relationship is first analyzed using 
SNOTEL-derived variables, then through a diagnostic model which includes remotely sensed snow timing 
information to evaluate the predictive capability of snow timing for SWE depth across wider contexts. This 
study provides a data-driven analysis into these relationships, as well as the influence of explanatory factors 
across the breadth of spatiotemporal contexts available from observations, from a multidimensional (i.e., 
in space and time) perspective. It is unique from solely station-based analyses (e.g., Fassnacht et al., 2003; 
Harpold & Molotch, 2015; Lute & Luce, 2017; Serreze et al., 1999; Trujillo & Molotch, 2014) since we merge 
SNOTEL and snow course SWE information with remotely sensed snow cover information to evaluate the 
strength of the SWE-timing relationship at both point and regional scales. It is also unique from recon-
struction studies and those using meteorological forcings (Broxton et al., 2016; Dawson et al., 2018), as this 
analysis does not rely on meteorological forcings. Rather, it is predicated primarily on snow timing variables 
obtained directly from observations to limit error sources, that is, from reconstructed melt rates or estimates 
of air temperature or radiation fluxes. Further, the parameterized model at the core of many reconstructions 
contains equations that are often of inadequate fidelity (sources of structural uncertainty) for snow process 
representation (Slater et al., 2013).

The objective of this study is to address the following questions: (1) How does the relationship between peak 
SWE and snow timing evolve through time? (2) How does this relationship vary across the western United 
States and Alaska? and (3) What meteorological and topographical conditions affect this relationship? We 
begin by examining the SWE-timing relationship solely within the SNOTEL record to minimize uncertain-
ties arising from disparate observational datasets. Here, we explore auxiliary snow and terrain indices at 
SNOTEL locations in the context of explaining the strength of the relationship on a site-to-site basis. The 
analysis is subsequently expanded to the regional scale through the incorporation of remotely sensed SCA 
data. An observation-based hierarchical model is used to quantify the influences of terrain and climate 
conditions on estimated peak SWE distribution, and determine the predictive skill that may be derived from 
snow timing. Finally, we apply the data-driven model and evaluate the utility of snow timing variables in 
estimating SWE across five hydrologically unique regions in the western United States and Alaska, through 
both cross-validation procedures as well as via comparison to supplemental SCS observations. Peak SWE 
is estimated within this diagnostic model for individual grid cells, as opposed to a regionally determined 
peak SWE obtained from a uniform date of maximum SWE depth, to account for spatial variability in peak 
SWE timing.

2. Methods
We first investigate links between peak SWE and snow timing variables, that is, the SWE-timing relation-
ship, across a large sample of SNOTEL locations across the West (Section 2.1). An analysis into the ex-
planatory power of temporally varying snow indices and spatially varying local topographic characteristics 
contributing to the strength of the SWE-timing relationship is described in Section 2.2. Next, an application 
of the SWE-timing relationship is conducted over five densely gaged and hydrologically important regions 
within the SNOTEL network (Figure 1) in order to assess the predictive capability of snow timing over larg-
er areas. Here, remotely sensed snow cover information is combined with SNOTEL SWE into a data-driven 
hierarchical peak SWE model (Section 2.3). In acknowledgment of the sparsity of SNOTEL sampling, we 
validate the model configurations through both cross-validation as well as through comparison with dis-
tinct snow course observations within the five study regions (Section 2.4). A description of all data sources 
and data screening procedures is provided in Section 2.5.

2.1. Station-Based Analysis of the Relationship Between SWE and Snow Timing Variables

For each SNOTEL site with continuously available data over the past two decades (full details of screening 
procedure in Section  2.5), daily observations were processed into four annually aggregated variables of 
primary interest for this analysis. These include annual peak SWE depth, as well as three snow timing vari-
ables that would typically be available from remote sensing: date of snow onset (DSO), DSD, and snow cover 
duration (SCD). We analyze the spatiotemporal variability in the strength of the relationship between these 
timing variables and peak SWE depth. An ordinary least squares (OLS) regression between log-transformed 
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(for linearization of the relationship) annual peak SWE and timing variables was performed for each SNO-
TEL site s = 1…Ns, where Ns is the number of SNOTEL stations during the study time period, t:

           


   0
1

log , , ,
n

peak i i
i

SWE s t s s ST s t s t (1)

Regressing the snow variables in this manner yielded a set of Ns = 611 y-intercept coefficients (β0), regres-
sion coefficients (βi), and coefficients of determination (R2), along with an error time series   at each SNO-
TEL station, for each snow timing variable, iST . The coefficient of determination, R2, describes the variance 
in peak SWE explained by the snow timing variable(s). The R2 in a regression incorporating all snow timing 
variables represents a theoretical maximum relationship strength between SWE and snow timing at a site, 
while comparing R2 values between regressions using each timing variable in isolation yields a site-specific 
“dominant index”; that is, the timing variable that explains the greatest amount of variability in annual 
peak SWE. The relative contribution among timing variables in explaining peak SWE provides context for 
the unique conditions that govern accumulation and ablation at a given site. Comparisons across sites were 
made to uncover the broader spatial pattern of these site dynamics, as well as consistency among sites 
within each region.

2.2. Analysis of Snow Timing Skill With Auxiliary Indices

To explain the site-to-site variation in SWE-timing relationship strength among the snow timing variables, 
temporally varying snow indices (It) identified by Fassnacht and López-Moreno (2020) were collected along 
with spatially varying topographical indices (Is) developed from a 30 m shuttle radar topography (SRTM) 
digital elevation model (DEM; NASA LP DAAC, 2013) at each SNOTEL site. Conditions affecting snow-
pack, such as the frequency and magnitude of winter storms, snowmelt during the period of accumulation, 
and topographical complexity such as slope, aspect, and elevation are largely described by It and Is, and 
summarized below in Table 1. Full descriptions of the indices are provided in Section 2.5.

To broadly characterize subsets of gages where snow timing variables provide high or low explanatory skill 
in explaining peak SWE variability, differences were computed between the full population of gages and a 
subset of gages that fall below the 10th percentile of R2 values, and those that are above the 90th percentile. 
A one-sample, two-sided t-test between these samples and the SNOTEL network as a whole was performed 
at the significance level p = 0.05. Defining the characteristics of sites that fall in one of these two groups was 
then determined by identifying the indices in which the samples significantly differ from the population.
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Figure 1. Locations of SNOTEL network sites (red) used in the evaluation of the SWE-timing relationship across the West. The five regional study domains 
used for analysis of the peak SWE-snow timing relationship are shown as black boxes (clockwise from top-left: Cascades, Northern Rockies, Southern Rockies, 
Alaska, Sierras), with SCS network locations (blue) used for validation. Only the SCS locations within each region were used in this study. Data sources and 
screening procedures are provided in Section 2.5.
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The residual series,  , produced from each site-specific regression (Equation 1) represents the variability 
in annual peak SWE not explained by the variability in the snow timing variables. Typically for a site with 
a relatively strong relationship, these errors are stochastic with relatively low magnitude, and randomly 
distributed. However, correlation between the error series and another index may represent additional skill 
attributable to the index, beyond that which is achievable through the use of snow timing variables alone. 
Consequentially, sites may be characterized through this method by relating the strength of the SWE-timing 
relationship to other indices. We explore diverging site characteristics between strong and weak SWE-tim-
ing relationship sites by analyzing the Pearson correlation between the residual series   generated from the 
regression (Equation 1) that includes all timing variables, and It through time at each SNOTEL site. Toward 
the same end, we also analyze the Pearson correlation between the regression R2 and Is across all SNOTEL 
sites.

2.3. Evaluating the Predictive Power of Snow Timing Through a Data-Driven Model

An application of the above site-based analyses is a spatially continuous framework for estimating peak 
SWE, developed for WY2001-2019. SNOTEL-derived peak SWE and snow timing data are blended with 
remotely sensed snow timing data, as well as a subset of auxiliary variables from Table 1, to generate maps 
of peak SWE across five regions in CONUS and Alaska (Figure 1). The purpose is to evaluate the predictive 
potential of the SWE-timing relationship through the prediction of peak SWE at locations outside of those 
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Temporal indices Description References
Spatial indices (from 
SRTM 30-m DEM) Description References

Peak date Date of peak SWE Fassnacht and 
López-Moreno (2020

Latitude WGS84 latitudinal coordinate NASA LP 
DAAC 
(2013)

Peakedness Days with SWE >50% peak 
SWE

Longitude WGS84 longitudinal coordinate

Snow days Days when SWE 
increase >5 mm

Elevation SRTM-derived elevation (m)

Accum snow days As above, but only during 
accumulation period

Slope SRTM-derived slope (degrees 
from horizontal)

Avg accum Peak SWE/days with 
snowfall

Aspect SRTM-derived aspect (degrees 
from North)

Melt days accum Days when SWE 
decrease >5 mm 
during accumulation 
season

Topographical position 
index (TPI)

Difference between the value 
of a cell and the mean value 
of its eight surrounding 
cells (m)

Hijmans 
(2020)

Melt during accum Sum of SWE 
decrease >5 mm 
during accumulation 
period

Terrain ruggedness index 
(TRI)

Mean of the absolute 
differences between the 
value of a cell and the value 
of its eight surrounding 
cells (m)

Cumulative SWE Peak SWE + amount 
of melt during 
accumulation period

Roughness Difference between the 
maximum and the 
minimum value of a cell 
and its eight surrounding 
cells (m)

Melt days melt Days when SWE 
decrease >5 mm 
during ablation period

Exposure index, filter 
length = 0.01°

Similar to TPI, using neighbor 
cells within 0.01° (m)

Anderton, 
et al. 

(2004)

Accum days melt Days when SWE 
increase >5 mm 
during ablation period

Exposure index, filter 
length = 0.05°

Within 0.05° (m)

Melt rate Peak SWE/ablation period 
length

Exposure index, filter 
length = 0.1°

Within 0.1° (m)

Table 1 
Description of Temporal (It) and Spatial (Is) Indices Used in the Station-Based Analysis
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used as training data, that is, those locations withheld from training. The utility of snow timing as a predic-
tor variable across a variety of sampling densities and regions, as well as the influence of additional indices 
from the site-based analysis, is explicitly examined.

The statistical model follows a two-level hierarchical approach similar to Suchetana et al. (2016) and Verdin 
et al.  (2015), blending sparsely sampled but serially complete ground observations (i.e., direct measure-
ments of SWE) with spatially continuous yet indirect observations of snow cover via satellite (Figure 2). 
The first hierarchy estimates annual peak SWE at SNOTEL sites through a linear regression between annual 
peak SWE and two snow timing variables developed from satellite observations, DSO, and DSD, following 
the regression framework described in Equation 1. The timing variable SCD was excluded because it was a 
linear combination of DSO and DSD. The second hierarchy spatially interpolates the regression coefficients 
developed at each site, along with a residual time-series, thus allowing estimates of peak SWE to be made 
at ungauged locations. A spatial Gaussian process (i.e., co-Kriging) is used to describe the spatial pattern of 
the coefficients and residual series, characterized by the exponential variogram function:

    
 

    
 
 

 2 2 1
h

h e (2)

where  2 is the nugget effect, which describes the level of dissimilarity between points at infinitesimally 
small lag;  2 is the sill, or the apparent total variance as the variogram approaches infinity; and   is the 
effective range, or the distance at which covariance between points plateaus.

Three coefficients were identified by applying the multivariate regression equation at each site location: one 
describing the intercept, and two for each timing variable DSO and DSD. A combination of spatial predic-
tors was implemented in the second model hierarchy for the theoretical variograms (Equation 2) fit using 
the ‘gstat’ package in R (Pebesma, 2004) for each coefficient and the residual series. These spatial predictors 
include Is identified as relatively influential (highest ranking correlations) in the site-based analysis: terrain 
ruggedness index (TRI), roughness, slope, elevation, latitude, and longitude. The coefficients and residual 
series were co-Kriged, and then used to estimate peak SWE at ungauged locations from Equation 1, yield-
ing a spatially continuous estimate of peak SWE for each year. Model estimates are in the same horizontal 
resolution as the MODIS satellite data (i.e., 500 m) and are calculated for each year within the study period 
(WY2001–2019) across all five domains outlined in Figure 1.
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Figure 2. A schematic of the hierarchical model used to test the predictive skill of snow timing (day of snow 
disappearance) for annual peak SWE. (a) Initially, a log-linear relationship is developed between SNOTEL-observed 
annual peak SWE and SNOTEL-observed day of snow disappearance for all MODIS pixels containing a SNOTEL gage. 
A set of regression coefficients and a residual time series are produced. (b) These are then kriged using pixel geographic 
position and terrain coefficients to obtain model-estimated regression coefficients at ungauged locations. (c) The 
coefficients are then used to back-calculate a model-estimated peak SWE for each year at ungauged locations.

(a)

(c)

(b)
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2.4. Model Validation

Validation of the estimated peak SWE was done through cross-validation of modeled versus SNOTEL SWE, 
as well as a comparison to SCS SWE observations within each of the five test regions. Cross-validations 
were applied to test model performance under a leave-one-out cross-validation (LOOCV) framework, in 
which one SNOTEL point is systematically dropped from the training set, and predicted over using the 
remaining data. This was done for each SNOTEL gage located in a test region. SCS SWE observations were 
used as an additional validation dataset. SCS data are generally only available on the first day of months in 
the latter part of the snow season (approximately January through June). Therefore, the maximum first-of-
month SCS SWE observation within a given year is taken as an approximator for peak SWE, and expected 
to have a negative bias relative to model-estimated SWE because peak SWE is unlikely to occur at the start 
of the month. This bias is estimated using SNOTEL data within each region, by comparing the bias between 
SNOTEL peak SWE and SNOTEL maximum first-of-month SWE. SCS measurements taken at the same 
location as a SNOTEL site were discarded to avoid duplications of sampled data in both the validation and 
training datasets. Standard statistical metrics such as bias, percent bias, and R2 are applied on a yearly basis 
to quantify performance.

2.5. Data Sources and Screening Procedures

SNOTEL and SCS screening, selection of the snow disappearance threshold, and selection and calculation 
of additional indices (It and Is), are described in Supporting Information S1. MODIS data selection and pro-
cessing are described below.

2.5.1. MODIS Data Processing

Images from the MOD10A1 (Hall & Riggs, 2016) platform aboard the MODIS Terra satellite were collected 
for each water year over a region spanning the western United States and Alaska, defined by the bounding 
box extending from 152°W to 100°W and 32°N to 68°N. MOD10A1 was chosen over MODSCAG (Painter 
et al., 2009) for this application, given the necessity for expanded geographical coverage, availability within 
Google Earth Engine, as well as a comparative analysis described in supporting information S2. Following 
Langlois et al.  (2004), a moving median window (i.e., a low-pass filter) of filter length k = 25 days was 
applied to the daily fractional snow covered area (fSCA) series to obtain a binary snow cover series using a 
fractional cover threshold such that It may be extracted. The filter length smoothes out small-scale short-
lived snow deposition events. Frequently, an adjustment to remotely sensed fSCA data for the viewable gap 
fraction (VGF) is applied to address issues of canopy masking snow cover (J. Liu et al., 2008; Molotch & 
Margulis, 2008; Raleigh et al., 2013). To evaluate uncertainties associated with threshold selection including 
the known impacts of canopy coverage, five different fSCA thresholds (1%, 5%, 10%, 20%, and 30%) were 
tested, resulting in five unique sets of MODIS-derived snow timing variable images for use in the diagnos-
tic model. Pixels with persistent snow cover before the beginning, or after the end of the water year, were 
omitted from the analysis for that year.

3. Results
3.1. Station-Based Analysis of the Relationship Between SWE and Snow Timing Variables

Snow timing variables (DSO, SCD, and DSD) explain 64% of peak SWE variability (median R2  =  0.64; 
σ = 0.18) across 611 SNOTEL sites (Figure 3). The strongest contributor to the overall R2 among timing var-
iables varied from gage to gage. However, the majority of the skill was most frequently attributable to DSD 
with median R2 of 0.56 (σ = 0.20) using DSD as the lone independent variable, followed by SCD (R2 = 0.36, 
σ = 0.20), and DSO (R2 = 0.05, σ = 0.10). An exception was found in the Northern Rockies, for example, 
where the peak-SWE from several gages was predicted most strongly by the DSO. Gages in this region also 
tended to have the lowest overall R2.

Alaska and the Northern Rockies show a high degree of variation in relative explanatory power among 
timing variables, while the Sierras and Cascades, for example, are much more uniform (Figure 4). Among 
the snow timing variables, DSD shows the strongest correspondence with peak SWE. Although this is a 
well-known relationship that underpins SWE reconstruction models (Déry et al., 2005; Guan et al., 2013; 
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Molotch, 2009; Schneider & Molotch, 2016; Sturm et al., 2010), it has not been rigorously explored as a 
direct predictor of peak SWE as it is here. The physical connection of DSD to peak SWE can be understood 
by the higher energy requirement for ablation of deeper snow since it contains more mass than shallower 
snow. Deeper snowpack has a higher cold content (energy deficit), and thus more energy and time are need-
ed to raise the internal temperature to 0°C and for melt to occur (Marks et al., 1999), altogether resulting in 
a later DSD. By contrast, DSO has the weakest relationship with peak SWE volume by a substantial margin. 
This result is expected, as early winter storms that deposit snow dictate the timing of snow onset, and the 
natural variation in timing and magnitude of these local weather events shows little connection with peak 
SWE depth at most SNOTEL sites. SCD, as a variable developed from snow onset and disappearance, gener-
ally shows a relationship strength that falls between the two.

Despite this general hierarchy of explanatory power (DSD > SCD > DSO), certain gages offer exceptions, 
and in many cases are spatially clustered. Most gages are dominated by DSD among timing variables in 
terms of explanatory power, and even gages that are not dominated by DSD are explained by a reduced abil-
ity to accurately determine DSD, rather than an apparent increase in explanatory power from DSO or SCD. 
This is evident from the coincidence of low R2 from all timing indices and from DSD alone. For example, the 
majority of DSO-dominated gages are concentrated in the Northern Rockies. Of the 24 gages dominated by 
DSO, 21 are located in either ID, MT, or WY. These gages also tend to be those with the weakest SWE-timing 
relationship overall. Twenty-one of the 24 DSO-dominated gages are in the lowest 10% of gages in terms of 
overall R2. By contrast, a total of 97 gages across the West are dominated by SCD, showing a mean R2 = 0.53, 
and are found in every state, though a majority (n = 31) still exists in ID, WY, or MT.

3.2. Analysis of Snow Timing Skill With Auxiliary Indices

The sites with the strongest and weakest SWE-timing relationship relative to the population are shown in 
Figure 5. For sites with a strong SWE-timing relationship, statistically significant (p <0.05) differences in It 
and Is relative to the entire population include longitude (higher R2 sites are generally more West than the 
population), slope (at steeper slopes), roughness (in more rough terrain), and average accumulation (more 
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Figure 3. Geographical variation in the coefficient of determination (R2) across 611 SNOTEL sites for the multivariate regression of peak SWE as a function of 
the three snow timing variables: day of snow onset (DSO), snow cover duration (SCD), and day of snow disappearance (DSD). A histogram of R2 values across 
all gages is shown in the top-left. A panel of three representative SNOTEL gages (R2 from top to bottom: 0.82, 0.81, 0.69) demonstrate the relationship between 
peak SWE and one timing variable, DSD.
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snowfall). For weak SWE-timing relationship sites, longitude (more East than the population), latitude 
(more North), elevation (gages are at lower elevations), and exposure indices at filter lengths 0.05° and 0.1° 
(greater exposure at these scales) were found to be significant. Notably, while high R2 sites were often found 
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Figure 4. Coefficients of determination (R2) across 611 SNOTEL sites (WY2000–2019) for 3 annual snow timing variables predicting annual peak SWE: day 
of snow onset (DSO), snow cover duration (SCD), and day of snow disappearance (DSD). (a) This shows the dominant (highest R2) timing index by color, 
with the five study regions outlined. Individual panels for each study region are displayed in (b), and (c) shows a histogram and kernel density function of the 
distributions of R2 values across sites for predicting peak SWE as a function of each timing index in isolation as well as combined.

Figure 5. (a) This shows the statistical significance in differences between the population of SNOTEL sites and 
samples representing gages with a strong SWE-timing relationship (blue) and weak relationship (red), as characterized 
by It and Is from Table 1. The horizontal line represents a significance level of 0.05. In (b), color-corresponding map 
shows the geographical distribution of gages in each group highlighting the uniqueness of interior gages.
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near the coast, low R2 sites were concentrated in interior regions, such as the Northern Rockies (MT, ID, 
WY) and the interior of Alaska.

The site-based residuals from Equation 1 were regressed against It (Table 1) in Figure 6. Correlations were 
disaggregated into quartiles based on the R2 of the fit between peak SWE and timing indices which gener-
ated the residuals. We find stronger correlations at low quartile (Q1) sites and weaker correlations at higher 
quartile sites for peak date, number of snow days, number of snow days during accumulation, number 
of melt days during accumulation, cumulative SWE, melt days during melt, and melt rate. We find the 
opposite pattern for peakedness, average accumulation, and melt during accumulation. We find 6 of the 
11 tested indices describe a relatively high correlation (R >0.4) with residual series across SNOTEL sites. 
Among these, the number of days with snowfall (snow days), the number of days with snowfall during the 
accumulation period (accum snow days), and the number of days where SWE decreases >5 mm during the 
melt season (melt days melt) are not directly calculated using peak SWE volume. This is important to note 
because the magnitude of the residuals in any regressed relationship naturally corresponds with the mag-
nitude of the regressand. Therefore, indices calculated using peak SWE volume (the regressand) will show 
some degree of baseline correspondence with residuals.

The analysis between residuals and Is yielded little correspondence and was hence excluded from Figure 6. 
None of the indices, with the exception of latitude (R = −0.24) and longitude (R = −0.25), exhibited a 
correlation of magnitude R >0.20. This implies a weak influence of the tested indices on SWE-timing rela-
tionship strength, and thus the majority of relationship strength is likely attributable to meteorology, rather 
than topography.

3.3. Evaluating the Predictive Power of Snow Timing Through a Data-Driven Model

For simplicity, the hierarchical model (Section  2.3) variogram for all described model experiments was 
constructed using a single configuration. Only the six Is variables with the strongest correlation with Equa-
tion 1 residuals—latitude, longitude, elevation, roughness, TRI, slope, and elevation—were used. Low cor-
respondence was found between most spatial covariates and SWE-timing relationship strength such that 
combinations of these indices yielded negligible difference in the variogram parameters. For example, the 
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Figure 6. Boxplots of Pearson correlations between regression residuals from Equation 1 and snow indices from Table 1, disaggregated into quartiles based on 
the R2 value of the SWE-timing relationship fit. Q1 describes R2 values below the 25th percentile, Q2 between the 25th and 50th percentiles, Q3 between the 
50th and 75th percentiles, and Q4 above the 75th percentile.
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nugget effect  2 from the model fit using only elevation as a covariate was approximately 2.83; using all 
six covariates,  2  2.86. This result is consistent with previous studies describing the outsized explana-
tory power of elevation relative to other physiographic variables for snow cover persistence (Molotch & 
Bales, 2006; Molotch & Meromy, 2014). Despite only a modest increase to  2, we choose to include all six 
variables within the model to account for locations where these indices have a greater influence on the 
SWE-timing relationship.

To understand the influence of the choice of fSCA threshold (described in Section 2.5) on model-estimated 
peak SWE, five unique thresholds were evaluated (1%, 5%, 10%, 20%, and 30%) relative to SNOTEL observa-
tions. In Alaska, a 5% threshold minimized percent bias (median = −11.9%, σ = 68.4% among gage locations 
in this region); in the Cascades a 10% threshold (percent bias of −3.1%, σ = 36.0%); in the Sierras, it was 30% 
(percent bias of 1.5%, σ = 19.5%); in the Northern Rockies, it was 20% (percent bias of 0.3%, σ = 30.3%); and 
in the Southern Rockies, a 30% threshold minimized percent bias (−0.9%, σ = 22.4%). Across the four re-
gions within CONUS, relatively little variation in percent bias (median regional σ = 24.88%) and R2 (median 
regional σ = 0.12) among fSCA thresholds was identified. However in Alaska, major differences in model 
performance across most gages were found (median percent bias σ = 84.12%, median R2 σ = 0.17), largely 
due to indefinite boundaries between seasons leading to the rejection of varying subsets of satellite-derived 
data. For purposes of standardization through space, a single fSCA threshold of 10%, which resulted in the 
lowest overall mean absolute percent bias of 5% across all 5 regions, was selected for the final model config-
uration used in the remainder of this study. Kernel density distributions of percent bias and R2 are provided 
in the Supporting Information Figure S3.

Maps of components of the hierarchical model, and estimated peak SWE are shown below in Figure 7, as an 
example for the Southern Rockies region in 2012. The spatial structure of model β values appears to closely 
follow the elevational gradient due to the outsized influence of elevation on the SWE-timing relationship 
relative to the other Is used to construct the model variograms. Areas with snow that either does not fall 
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Figure 7. Example spatial maps for components of the hierarchical model applied in the Southern Rockies for 2012. The elevation map also shows SNOTEL 
locations within the region as red points. SO and DSD show MODIS-derived timing variables. These are multiplied by their respective co-Kriged betas, shown 
below each, added to the residuals and intercept beta, and exponentiated to reverse the log transformation and arrive at an estimated peak SWE. Masked pixels 
seen in the SO, DSD, and peak SWE maps are attributable to glaciers (persistent snow usually at high elevations), or did not receive persistent snow within the 
appropriate seasonal timeframe.
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before January 1 or does not melt before October 1 are masked to avoid misleading and erroneous estimates 
of peak SWE from being made in locations with an unclear seasonal snow pattern.

3.4. Model Validation

LOOCV results describing the relative bias of the model-estimated peak SWE compared to SNOTEL within 
each region are shown below in Figure 8. Median percent bias in Alaska, the Cascades, the Northern Rock-
ies, the Sierras, and the Southern Rockies are 14.7%, −3.1%, −0.5%, 3.2%, and −3.2%, respectively. Correla-
tions between modeled SWE and SNOTEL observations were largely high. Among all gages and threshold 
values, Alaska had median R = 0.75, σ = 0.12; Cascades R = 0.88, σ = 0.09; Sierras R = 0.96, σ = 0.05; 
Northern Rockies R = 0.86, σ = 0.06; Southern Rockies R = 0.88, σ = 0.11. Across the regions in CONUS, 

model performance through the time period remains relatively consist-
ent (mean R2 = 0.76), suggesting that annually changing climate patterns 
are largely captured using snow timing variables. In Alaska, however, the 
agreement with SNOTEL observations varies much more widely, particu-
larly in climatologically outlying dry years such as 2015.

Results from comparing model-estimated peak SWE against SCS maxi-
mum first-of-month SWE are shown below in Figure 9. Because SCS data 
are recorded for the first of every month, rather than daily, an inherent 
bias between model-estimated peak SWE and SCS maximum first-of-
month SWE is expected. This bias is estimated using SNOTEL data with-
in each region, by comparing the bias between SNOTEL peak SWE and 
SNOTEL maximum first-of-month SWE. Across all regions, the mean 
expected bias between SNOTEL observations is approximately 32  mm 
(σ = 13 mm), and mean expected percent bias is 6.8% (σ = 2.8%). Com-
paratively, the bias between model-estimated and SCS peak SWE varies 
more widely. Across all regions, the mean bias between model and SCS 
observations is approximately 12 mm (σ = 184 mm), and mean percent 
bias is approximately 6.2% (σ = 32%).
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Figure 8. LOOCV percent bias between model predicted peak SWE and SNOTEL peak SWE for each of the five 
regions for WY2001–2019, using a MODIS fSCA threshold of 10%.

Figure 9. Distribution of model-estimated peak SWE bias against snow 
course survey (SCS) maximum first-of-month SWE at SCS locations within 
each region. Bias is shown in (a), and percent bias in (b). Median values 
are overlaid.



Water Resources Research

4. Discussion
A retrospective analysis was conducted to diagnose the explanatory power of snow timing variables in esti-
mating peak SWE. This work was motivated by the premise of incomplete in situ observational data for the 
adequate measurement of peak SWE. While SWE reconstruction methods reassemble melt energy forcings 
together with remotely sensed snow timing variables, the energy budget terms are rarely known without 
uncertainty. Snow timing, while also uncertain, has the advantage of being generally continuously observed 
and readily available from remote sensing sources. Snow timing metrics provide utility for estimating peak 
SWE in their relative parsimony, transferability, and simplicity, at the cost of poorer representation of ter-
tiary, mechanistic physical connections present in most physical models. Given these limitations, such vari-
ables find usefulness primarily as a diagnostic tool: the spatiotemporal patterns of SWE-timing relationship 
strength (and its diminishment) offer insight into the strength and scale of the various meteorological and 
topographical conditions influencing melt and accumulation patterns.

A number of implications for SWE reconstructions and other snow models arise from this analysis. Cen-
tral to many reconstructions is the relationship between the timing of complete snow ablation and the 
total magnitude of peak snow accumulation (Durand et al., 2008a, 2008b; Molotch, 2009), which we in-
vestigate in this analysis as DSD and peak SWE, respectively. Some local-scale processes, such as variabil-
ity in wind speed and multilayer snowpack processes, are not explicitly included in reconstructions (e.g., 
Molotch, 2009), and generate a spatiotemporally variable field of uncertainty. Naturally, this notion extends 
to the limitations of other snow models in process representation, introduced by parameterization, scale 
uncertainties, and other factors. Our analysis seeks to provide a “diagnosis” of these uncertainties across 
key headwaters regions in the West, and in doing so provide important information for understanding po-
tential locality-specific sources of model error. For example, the relatively poor SWE-timing relationship 
strength in the Northern Rockies suggests caution when interpreting snow reconstructions in this region. 
In this region, for example, the skill of reconstruction-based SWE will rely more heavily on energy-balance 
calculations than on the date of complete ablation. In contrast with the maritime climate of the Cascades 
and Sierras where SWE-timing relationship strength was stronger, winter wind speeds in the Northern 
Rockies are considerably higher (Klink, 1999), and wind-borne redistribution of the lower density conti-
nental snowpack may present a challenge for snow reconstructions which do not explicitly take this process 
into account.

The initial comparison between sites of strong and weak SWE-timing relationship strength across the 
western United States and Alaska (Figure 5) yields several persistent site characteristics that describe each 
group. Sites with relatively high SWE-timing strength differ from the population in that they are generally 
located nearer to the ocean (lower longitude), have a steeper slope, greater terrain roughness, and show a 
greater average accumulation (high ratio between peak SWE and number of days with snowfall). The ma-
jority of strong-relationship sites are found in the Sierras and other coastal locations under maritime snow 
regimes, which suggest that meteorology could be the primary driver of relationship strength: the shorter 
accumulation periods and higher maximum snow accumulations (i.e., fewer, larger snowstorms) common 
for these locations (Trujillo & Molotch, 2014) intuitively suggest greater homogeneity among SNOTEL sites 
and a greater correspondence overall between peak SWE and snow timing. By contrast, low-strength sites 
are most often located further inland (as seen in Figure 5), comparatively lower in elevation, and much 
more exposed at spatial scales on the order of 0.05°–0.1° (shown in Figure S8 in Supporting Information). 
These sites are typified by longer accumulation and ablation periods (slower rates of accumulation and 
melt); the total number of days with snowfall, days with snowfall during accumulation only, and the num-
ber of days where SWE decreases >5 mm during melt season are all relatively high compared to the popu-
lation. The high number of days receiving snow may be characterized by the presence of smaller magnitude 
storms and/or a higher frequency of storms (a lower ratio between peak SWE and the number of days with 
snowfall). This finding is also consistent with Trujillo and Molotch (2014) who noted that the continental 
snow regimes are often characterized by lower maximum snow accumulations and longer accumulation 
periods, with the opposite conditions for maritime regimes. Furthermore, western mountain ranges (e.g., 
Cascades, Sierras) typically experience storms that come from persistent directions, that is, from the West, 
while the interior Rockies experience both down and upslope storms, which may strongly influence snow 
evolution at a point (e.g., wind redistribution, preferential deposition, saltation) and at larger scales (e.g., 
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orographic effects) (Winstral et al., 2002). This may at least partially explain the overall difference in skill 
between SNOTEL sites in continental and maritime snow regimes.

The spatial analysis between SWE-timing strength and Is showed that none of the terrain variables have a 
particularly strong correspondence with SWE-timing relationship strength, attributable to several possible 
explanations which may be worthwhile to explore in future studies. First, a lack of variability in terrain char-
acteristics among SNOTEL locations diminishes any potentially strong correspondence with SWE-timing 
strength. Also, the location bias of SNOTEL gages tends toward open clearings, which preclude the oppor-
tunity to test influences of vegetation which have well-documented impacts on snow evolution (Hiemstra 
et al., 2002; Musselman et al., 2008; Rasmus et al., 2011) through canopy interception, wind blocking effects, 
and long-wave radiation emitted from vegetation. Second is the mismatch between process and DEM scales 
(Blöschl, 1999). For example, rocky outcroppings, small valleys, and other topographical complexities rel-
evant at sub-30 m resolution (the resolution of the DEM used in this study), and by consequence the local 
processes they affect, would not be accounted for at the scale of the DEM. Wind advection, particularly for 
less dense continental snowpack, may also play a large role in determination of SWE-timing relationship 
strength (Winstral et al., 2002). There also appears to be a tendency for SNOTEL sites to be situated in rel-
atively exposed locations in the Northern Rockies, as evidenced by statistically significant high exposure 
index values at 0.05° and 0.1° filter lengths among these sites relative to the overall population, and this 
exposure in turn appears to be significantly correlated with poor SWE-timing relationship strength. Other 
untested variables are described below.

An fSCA 10% threshold was found to minimize the average percent bias in model versus SNOTEL peak 
SWE across all regions, despite notable spatial variation. Large standard deviations between gage locations 
within regions, as well as differences between regions themselves, may reflect known local-scale variation 
in grid- versus point-scale representation of snow depletion (Cristea et al., 2017; Homan et al., 2011), as well 
as the implicit effects of fractional vegetation coverage. The issue of representativeness between point- and 
grid-scales has been discussed by a number of studies (Y. Liu et al., 2013, 2015; Livneh et al., 2014; Meromy 
et al., 2013; Molotch & Bales, 2006), but specific to this application, the role of vegetation is expected to 
have a large effect on point-to-grid representativeness, given SNOTEL siting within clearings surrounded by 
sometimes dense vegetation (Bair et al., 2016; Molotch & Bales, 2006; Raleigh et al., 2013). SNOTEL stations 
are also preferentially located in flat, midelevation regions of easy access, and as a result may misrepresent 
conditions when spatially interpolated (Lundquist et al., 2019; Wayand et al., 2013), as is done for the at-
a-station coefficients and residuals developed from Equation 1 and Kriged over the MODIS grid. Further, 
the potentially poor representation of snow cover from the MOD10A1 product at low (fSCA <0.10) cover 
fractions (Rittger et al., 2013; Salomonson & Appel, 2004) may limit the detection of small persistent snow 
at the SNOTEL site and thus results in differing dates of meltout. The effects of vegetation on VGF and 
uncertainties fSCA were not directly quantified, but instead were implicitly evaluated by exploring a range 
of fSCA (1%–30%). Overall, this range is comparable to the satellite fSCA errors reported in observational 
studies: +/− 11% fSCA biases (Bair et al., 2016), and 9%–22% in meadows and 9%–37% in forests by Raleigh 
et al. (2013). Yet, it is possible that additional VGF and fSCA errors may exist, which are outside the scope 
of this study.

In contrast with bias, correlation of modeled versus SNOTEL peak SWE was relatively strong across regions 
and threshold values, and did not significantly vary between gages. Among all gages and threshold values, 
Alaska had median R = 0.75, σ = 0.12; Cascades R = 0.88, σ = 0.09; Sierras R = 0.96, σ = 0.05; northern 
Rockies R = 0.86, σ = 0.06; southern Rockies R = 0.88, σ = 0.11. This result suggests interannual spatial 
patterns in relative snow volume being reasonably well captured through the use of timing variables, even 
in the presence of threshold-dependent bias.

The diagnostic model used in this study follows a hierarchical structure, where time-varying relationships 
between SWE and snow timing are modeled to develop regression coefficients in the first level, and then 
interpolated with a spatial structure developed with Is. This hierarchical form of analysis allows for a clear-
er, organized conceptualization of the multidimensional variables which influence the SWE-timing rela-
tionship in both space and time. While model performance was found to be adequate for this application, 
there is potential for extending this analysis into a Bayesian framework, similar to previous studies which 
unite remote sensing and ground-based observations (Bracken et al., 2016, 2018; Verdin et al., 2015). As 
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opposed to the traditional OLS-based parameter estimation used here, Bayesian kriging defines and rou-
tinely updates a set of prior distributions for parameters through a Markov Chain Monte Carlo (MCMC) 
simulation to produce a posterior distribution, effectively quantifying parameter uncertainty. This quantifi-
cation would represent added analytical value. Additionally, outside datasets such as annual research and 
operational snow surveys, as well as CZO LiDAR data (Harpold et al., 2014), would provide value as addi-
tional validation of the hierarchical model, which is currently limited by greater uncertainty at unsampled 
locations with topographical characteristics outside those of the SNOTEL dataset used to train the model.

Overall, the SWE-timing relationship applied with derived timing variables resulted in low median peak 
SWE biases and high R2 values in the LOOCV analysis relative to SNOTEL observations, yet high variability 
among gage-years overall (median bias = −2.4 mm, σ = 213.8 mm; median percent bias = −0.5%, σ = 33.4%; 
median R2 = 0.78, σ = 0.16). The strongest model performance in the Sierras region (bias = 11.4 mm, per-
cent bias = 2.6%, R2 = 0.93) is likely reflective of the meteorology within the Sierras region being more 
seasonally consistent, as evident from the uniform ratios of timing index explanatory power among gages 
in the region in Figure 4, and most individual sites within the Sierra region showing a SWE-timing relation-
ship strength in the top 10% of all gages analyzed (Figure 5). Marks and Dozier (1992) affirm the consistent 
dominance of solar radiation for spring snowmelt in the region leading to repeating melt patterns year over 
year. Conversely, performance was relatively poor in Alaska, a region at much higher latitude, with a unique 
climatology compared to CONUS such that it had poorer representation by the model training dataset and 
much sparser gage representation (only 19 gages in all of the state of Alaska contained sufficient data). 
This region was further beset by a high degree of cloud cover and polar darkness as was common at higher 
latitudes (Lindsay et al., 2015) and characterized by a heterogeneous mixture of intermittent and persistent 
snowpack patterns (similar to low-lying SNOTEL sites in the southwestern United States), the latter of 
which hindered collection of snow timing data points from MODIS for use in the model.

A wider range of biases between model-estimated peak SWE and SCS observations relative to the LOOCV 
SNOTEL validation was found. One source of the marginally higher bias in comparing the model to SCS 
data as opposed to SNOTEL is that SCS sampling locations span a wider, and often lower, elevation range 
than SNOTEL. The mean elevation of SNOTEL gages is approximately 2,225 m above sea level (spanning 
91–3,536 m) and the mean elevation of SCS observations is 1,730 m (spanning 15–3,535 m). As evidenced by 
Figure 6, elevation is a significant factor in determining SWE-timing relationship strength at low strength 
sites. The remainder of unaccounted-for bias is likely attributable to the various factors described above 
which affect peak SWE-snow timing relationship skill. These appear to be relatively influential at local 
scales, considering the generally high median bias within each region, except the Sierras, which continues 
to be the region of highest model skill.

5. Conclusions
An analysis into the utility of SCA-derived snow timing variables for estimating peak SWE was presented 
with the goal of quantifying relationships between the hydrologically useful, yet sparsely sampled, SNOTEL 
peak SWE observations and more spatially continuous satellite-based SCA retrievals. A regression analysis 
across 611 SNOTEL locations revealed the relatively strong explanatory strength of snow timing variables 
(median R2 = 0.64, median bias = −7.25 mm, median percent bias = 1.96%), in particular the DSD (median 
R2 = 0.56, median bias = −8.85 mm, median percent bias = 2.35%), in explaining peak SWE variability over 
a given water year.

The SNOTEL sites where the explanatory relationship was strongest were characterized by proximity to 
the Pacific coast, a steeper average slope in the surrounding area, a greater topographical roughness, and 
a higher ratio between peak SWE and number of days with snowfall (i.e., larger-scale snowstorm events). 
Sites with a weaker relationship were generally located in the Northern Rocky Mountain region, at lower 
elevation, and more topographically exposed. A statistical model was implemented in five hydrologically 
diverse regions across the western United States and Alaska for WY2001–2019, and leveraged this relation-
ship to understand the capability for estimating peak SWE as a function of snow timing (DSO and day of 
snow disappearance).
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Through an LOOCV procedure, the overall performance of this simplified, observationally based model was 
found to be relatively strong at SNOTEL sites, with a median R2 = 0.78 between model peak SWE and SNO-
TEL peak SWE across 118 locations within the five regions. Comparable biases were found when comparing 
model peak SWE to both SNOTEL (−2.4 mm, −0.5%) and SCS (39.6 mm, 8.3%) networks despite a more 
limited sampling rate in SCS data, indicating performance consistency at locations beyond the SNOTEL 
network.

At this stage, the model is limited in its application as a diagnostic tool. Future implementation of this ap-
proach would require an additional effort to investigate the effects of vegetation and other local-scale influ-
ences on the SWE-timing relationship, which may be accomplished using new and emerging datasets from, 
for example, LiDAR and ground-based surveys. Despite this, consistently high correlation with observations 
across years offers promising potential for snow timing variables to capture changing spatial patterns in 
peak snow (Zeng et al., 2018), critical for water resources derived from mountainous headwater regions.

Data Availability Statement
Maps of snow timing variables developed for use in the diagnostic model are archived on Zenodo and 
available at http://doi.org/10.5281/zenodo.4327643 (Heldmyer & Livneh, 2020). SNOTEL, SCS, and MODIS 
observational data used in this study are available publicly, and we refer readers to the provided citations 
within the Methods section.
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